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Abstract Holocene relative sea-level (RSL) records exhibit
spatial and temporal variability that arises mainly from the
interaction of eustatic (land ice volume and thermal expan-
sion) and isostatic (glacio- and hydro-) factors. We fit RSL
histories from near-, intermediate-, and far-field locations with
noisy-input Gaussian process models to assess rates of RSL
change. Records from near-field regions (e.g., Antarctica,
Greenland, Canada, Sweden, and Scotland) reveal a complex
pattern of RSL fall from a maximum marine limit due to the
net effect of eustatic sea-level rise and glacio-isostatic uplift
with rates of RSL fall as great as −69±9 m/ka. Intermediate-
field regions (e.g., mid-Atlantic and Pacific coasts of the USA,
Netherlands, Southern France, St. Croix) display variable
rates of RSL rise from the cumulative effect of eustatic and
isostatic factors. Fast rates of RSL rise (up to 10±1 m/ka) are
found in the early Holocene in regions near the center of
forebulge collapse. Far-field RSL records exhibit a mid-
Holocene highstand, the timing (between 8 and 4 ka) and

magnitude (between <1 and 6 m) of which varies among
South America, Africa, Asia, and Oceania regions.
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Introduction

Reconstructions of Holocene relative sea level (RSL) provide
important constraints for calibrating geophysical models of
Earth’s rheology and glacial-isostatic adjustment (GIA)
[1–3], estimating ice-equivalent meltwater input [4–7], and
fingerprinting sources of ice mass loss [8–12].

Changes in RSL, which is defined as the height of the
ocean surface relative to the land surface or ocean floor [13],
are driven by the net effect of eustatic, isostatic (glacio- and
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hydro-), ocean dynamic, tectonic, and local (e.g., tidal regime
change or sediment consolidation) factors that act over a va-
riety of spatial and temporal scales [12, 14]. Since the Last
Glacial Maximum (LGM; 26 ka), RSL changes have been
driven by the melting of ~50 million km3 of land-based ice
as the Earth transitioned from glacial to interglacial climatic
conditions [15–17]. This transfer of mass from land ice to the
global ocean both increased ocean volume and triggered a
large, ongoing isostatic response of the solid Earth [4, 13,
18, 19]. The present-day rate of RSL rise due to GIA varies
among near-, intermediate, and far-field regions (Fig 1) [20].
In near-field regions (i.e., areas located beneath continental ice
sheets at the LGM), the rate of glacio-isostatic uplift during
deglaciation exceeded the rate of eustatic (land ice volume and
thermal expansion) sea-level rise, resulting in RSL records
characterized by continuous RSL fall (Fig 2). Rates of
present-day RSL fall as great as −8 mm/a occur in near-field
locations (Fig 1). Depression of land beneath LGM ice sheets

caused migration of mantle material away from ice load cen-
ters, resulting in uplift of a forebulge in intermediate-field
regions adjacent to ice sheets [1, 21–28]. As land-based ice
diminished and mantle material returned to the former load
centers, the forebulge collapsed and retreated (glacio-isostatic
subsidence). Thus, isostatic and eustatic effects worked in
tandem to cause RSL rise. After 7 ka, the relative contribution
from glacio-isostatic subsidence increased as meltwater input
was reduced [4]. RSL rise slowed from the absence of [28] or
minimal [5, 7] eustatic contribution during the late Holocene
(last 4 ka); RSL rise in these regions resulted from continuing
glacio-isostatic subsidence (Fig 2). RSL is rising at present in
intermediate-field locations, the rate of which varies with dis-
tance to former ice centers (Fig 1). Transitional zones occur at
LGM ice-sheet margins (e.g., Massachusetts on the U.S.
Atlantic coast) where initial glacio-isostatic uplift was follow-
ed by subsidence from forebulge migration [29]. These loca-
tions experience rates of present-day RSL rise in the higher

mm/a-8 -2 -1 -0.4 -0.3 -0.2 -0.1 0 1 5 7

Rate of relative sea-level change

Fig. 1 Current rates of relative
sea-level (RSL) change from
glacio-isostatic adjustment (GIA)
predicted using ICE-6G_C
(VM6) model [20]. The color
scheme denoting rates of RSL
change was chosen to remain
consistent with previous GIA
modeling studies from the Uni-
versity of Toronto
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range of intermediate-field sites (Fig 1). In far-field regions at
increasing distances from major ice centers, eustatic contribu-
tions to RSL change exceeded glacio-isostatic contributions
[4, 5, 15, 16, 30–36]. The RSL signal of many far-field loca-
tions is characterized by a mid-Holocene sea-level maximum,
or highstand, at the time meltwater production decreased [37].
The fall in RSL to present is due to hydro-isostatic loading
(continental levering) [18, 30] and a global fall in the ocean
surface due to both hydro- and glacio-isostatic loading of the
Earth’s surface (equatorial ocean siphoning) [38].
Perturbations to Earth’s rotation driven by mass redistribution
also cause RSL changes in far-field regions to depart from the
eustatic value [39]. These processes occur during the deglacial
period but are not manifested in far-field RSL records until the
early to mid-Holocene because the eustatic signal is dominant
prior to this time [5]. Far-field locations are characterized by
present-day rates of RSL change that are near constant or
show a slight fall (<0.3 mm/a) in RSL (Fig 1).

RSL Histories and Application of Gaussian Process
Model

Here, we present local RSL data that are representative of
regional trends to show deglacial patterns of change and iden-
tify processes that may have caused these changes. The

selected recent and/or benchmark studies illustrate the full
range of Holocene RSL variability. Each study has sea-level
data from the early to late Holocene and minimal influence
from tectonic or local factors (although if the influence from
tectonic or local factors is apparent, these factors are discussed
in the text). We present studies from a pole-to-pole transect
across the Americas (Greenland, North America, the
Caribbean, South America and Antarctica) and Eurasia/
Oceania (Europe, the Mediterranean, Asia, Africa, and
Oceania) that are representative of the influence of eustatic
and isostatic effects on regional RSL histories (Figs. 3, 4).
We note that while we have chosen sites representative of
regional trends, they do no account for the full variability
present in RSL histories within a region.

We show sea-level index points that record the position of
RSL over time at each location [40, 41]. Each index point
contains information about its (a) geographic location; (b)
age from 14C, U/Th, optically stimulated luminescence or
amino acid racemization dating and the associated measure-
ment and/or calibration error; and (c) elevation of former sea
level and the associated vertical error. We also show marine
and freshwater limiting data that define the lower- and upper-
bound of RSL, respectively [41]. We do not change the inter-
pretation of index points from the original studies, although in
one study [42] where vertical error was not specified for four
index points, we assign a conservative (±1 m 2σ) error value.
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Fig. 2 Schematic representation
of the glacio-isostatic adjustment
processes in response to the
waxing and waning of
continental-scale ice sheets and
the associated land-level change
in near-, intermediate-, and
far-field locations modified from
Kemp et al. [46]
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We acknowledge that the error values of many of the index
points may be underestimated, in particular because local fac-
tors that influence RSL, such as sediment compaction or tidal
range change, are not considered [43]. Where necessary, we
have converted radiocarbon ages into thousand calibrated
years (ka) before present (BP), where the year 0 BP is con-
ventionally taken to be 1950 CE. For clarity, we describe ages
to the nearest 0.1 ka without chronological uncertainty. The
RSL data can be found in Online Resource 1.

We expand on recent reviews showing Holocene RSL
variability [13, 44–47] by applying a non-parametric sta-
tistical technique (empirical hierarchical modeling with
Gaussian process priors) that appropriately accounts for
the vertical and chronological uncertainties of the RSL
data to provide a probabilistic assessment of past RSL
changes and rates of past RSL change [48–50]. This meth-
od has not been previously adopted to describe spatial var-
iability in RSL change on a global scale and represents a
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Fig. 3 Selected relative sea-level (RSL) reconstructions from Southern
Disko Bugt, Greenland [54, 56], Northwest Georgia Strait, Canada [49],
SouthernMaine, USA [71], New Jersey, USA [43], Louisiana, USA [74],
California, USA [49], St. Croix [99], Suriname and Guyana [100 ], Rio
Grande do Norte State, Brazil [102], and South Shetland Islands, Antarc-
tica [112, 114]. Altitudes and interpretations of sea-level index points
(including errors) have not been amended from the original publication

(see section 2 for details). All y-axes are RSL (meters to present). Radio-
carbon ages were converted to calibrated dates where necessary. X-axes
are in 1000 calibrated years before present (ka). Limiting points that do
not constrain the position of RSL are not shown. Blue curves show the
Gaussian process model fit to the data, with the heavily/lightly shaded
areas representing 1σ/2σ uncertainties
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considerable advancement of the approach to determine
rates of Holocene RSL change.

We assume that RSL over time at each site, indicated by
f(t), can be characterized by a Gaussian process prior [51]. The
prior mean is taken as either the maximum or the mean of all
of the RSL data at the given site (maximum if near-field and
mean if intermediate- or far-field). The prior covariance is
given by a Matérn covariance function with smoothness pa-
rameter ν=3/2:

k Δtð Þ ¼ σm2 1þ
ffiffiffi

3
p

Δt

τ

� �

exp −
ffiffiffi

3
p

Δt

τ

� �

;

where σ is the prior amplitude of RSL variability, τ is the
characteristic time scale of variability, and Δt is the temporal
distance between two time points (see Online Resource 2 for
further detail). The proxy records provide noisy observations
yi of f(t), with geochronological uncertainty incorporated

using the noisy-input Gaussian process method of
McHutchon and Rasmussen [52]:

yi ¼ f ti þ δið Þ þ εi
f ti þ δið Þ≈ f tið Þ þ f

0
tið Þδi

where ti is the mean reported age of observation yi, δi is the
error in the age estimate, and εi is the error in the height
estimate. Both age and height errors are assumed to be nor-
mally distributed. The variance of the age error is calculated
from the error specified in columns 8 and 9 of Online
Resource 1. The variance of the vertical error is calculated
from the specified error in columns 5 and 6, augmented by a
constant σn

2 to correct for underestimation of data errors. The
hyperparameters σm

2, τ, and σn
2 are tuned separately for each

site to maximize the marginal likelihood of the model condi-
tional upon the observations at that site. The reported rates of
sea-level change are average rates calculated over the
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Fig. 4 Selected relative sea-level reconstructions from Arisaig, Scotland
[121], Baltic Coast of Sweden [122], Rotterdam, Netherlands [123],
Southern France [138], Tunisia [138], Nile, Egypt [141], Langebaan
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Australia [182] shown as in Fig. 3
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specified time interval based on a linear transformation of f(t).
In the following sections, we present model predictions and

rates using the mean and 1σ uncertainty (Figs. 3, 4). We pres-
ent average rates of RSL change for 1-ka intervals for each of
the sites in Table 1 and Fig. 5.

Greenland

In the near-field location of Greenland, reconstructions from
isolation basins provide information on the age of the marine
limit of the Greenland Ice Sheet (GrIS) and decimeter-scale
changes in RSL since ~15 ka [53–59]. Greenland’s RSL his-
tory has been dominated by glacio-isostatic uplift from the
retreat of the GrIS since the LGM, although spatial variability
exists across the region due the variations in local ice load

history as well as the influence of the Laurentide deglaciation
[60–64].

Isolation basins from Qeqertarsuatsiaq [54] and Innaarsuit
[56] located in southern Disko Bugt, west-central Greenland,
indicate ice free conditions at 10.5 ka, followed by a rapid fall
in RSL at a rate of −29±2 m/ka to 40±3 m by 8.5 ka (Figs. 3a,
5a) due to significant, rapid ice retreat, and the associated
glacio-isostatic uplift [64]. The rate of RSL fall slowed to
−8.6±0.7 m/ka between 8.5 and 4 ka before RSL reached its
present-day level at 4 ka. RSL then dropped to a lowstand of
−2.6±0.2 m at ~2 ka. RSL records across Disko Bugt show
broadly similar RSL histories to the Qeqertarsuatsiaq and
Innaarsuit record, although the timing of ice margin retreat
(northwest of Disko Bugt and Disko Island became ice free
before the main bay) and timing of the mid- to late Holocene
lowstand (~3 ka in the east and~2 ka in the west) varies,

Table 1 Average rates (m/ka) of RSL change for each site. Values listed are mean±1 standard deviation

Average rate (m/ka)

Site 12–10 ka 10–8 ka 8–6 ka 6–4 ka 4–2 ka 2–0 ka

Greenland

Southern Disko Bugt, Greenland −23 ± 2 −8.4 ± 1.5 −8.1 ± 1.1 −2.4 ± 1.2 1.6 ± 1.0

North America

Southern Maine, USA 9.6 ± 2.8 1.4 ± 3.1 5.8 ± 2.4 1.5 ± 0.6 0.8 ± 0.3 0.7 ± 0.2

Northwest Georgia Strait, Canada −6.0 ± 3.3 1.5 ± 3.4 2.6 ± 3.3 0.2 ± 3.1 −0.3 ± 2.9 −0.5 ± 1.4

New Jersey, USA 7.2 ± 1.2 3.4 ± 0.5 2.0 ± 0.5 1.6 ± 0.4 1.4 ± 0.4

Central California, USA 14 ± 1 8.6 ± 1.0 2.6 ± 0.4 0.9 ± 0.2 1.8 ± 0.3 1.3 ± 0.3

Louisiana, USA 3.7 ± 0.1 1.1 ± 0.1 0.6 ± 0.2 0.8 ± 0.2

Caribbean and South America

St. Croix 4.0 ± 1.2 0.9 ± 0.9 0.7 ± 0.7 0.8 ± 0.5

Suriname and Guayana 9.9 ± 1.4 2.0 ± 0.5 0.7 ± 0.9 0.0 ± 0.7 −0.5 ± 0.4

Rio Grande do Norte State, Brazil 4.0 ± 0.6 −0.2 ± 0.6 0.1 ± 0.6 −0.7 ± 0.4

Antarctica

South Shetland Island, Antarctica 0.6 ± 1.4 −0.4 ± 1.4 −2.4 ± 1.4 −5.2 ± 1.0

Northwest Europe

Arisaig, Scotland −0.1 ± 0.5 1.3 ± 0.5 0.1 ± 0.5 −1.2 ± 0.4 −0.4 ± 0.7 −1.6 ± 0.6

Baltic coast Sweden 2.7 ± 0.6 −1.6 ± 0.6 −2.0 ± 1.1 −0.8 ± 1.0

Rotterdam, Netherlands 2.6 ± 1.3 5.3 ± 1.0 2.5 ± 1.0 0.9 ± 2.0 0.4 ± 1.9

Mediterranean

Southern France 13 ± 1 8.6 ± 0.5 2.8 ± 0.4 1.4 ± 0.2 0.5 ± 0.1 0.2 ± 0.1

Tunisia 2.7 ± 0.9 −0.6 ± 0.3 −0.1 ± 0.3 0.1 ± 0.2

Nile, Egypt 9.8 ± 1.5 4.3 ± 0.6 1.7 ± 0.6 0.3 ± 0.6 0.8 ± 0.7

Africa

Langebaan Lagoon, South Africa 11 ± 2 3.1 ± 1.1 −0.5 ± 1.0 0.2 ± 1.0 −0.6 ± 0.7

Asia

West Guangdong, China 6.8 ± 1.3 4.0 ± 0.4 0.1 ± 0.3 −0.2 ± 0.2 −0.1 ± 0.2

Singapore 13 ± 2 3.3 ± 0.7 −0.8 ± 0.9 −0.5 ± 0.9 0.0 ± 0.5

Oceania

North Queensland, Australia 16 ± 3 5.3 ± 2.4 3.1 ± 2.4 0.6 ± 2.4 −0.8 ± 2.4 −0.2 ± 1.6

New South Wales, Australia 9.5 ± 1.6 2.3 ± 0.6 0.0 ± 0.5 0.1 ± 0.4 −0.7 ± 0.3
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which is consistent with the progressive expansion of a belt of
forebulge subsidence from ice sheet regrowth during the
neoglacial [53, 64, 65].

On a broader scale, other Greenland sectors show a differ-
ent pattern in RSL change. Sites in southern Greenland (e.g.,
Paamiut [59], Nanortalik [61, 62], Qaqortoq [62], Tasiusaq
[66]) became ice free at ~15 ka, after which RSL fell rapidly
until it reached its present level at ~10 ka and prior to 4 ka fell
to a lower lowstand compared to western Greenland of −6 to
−8 m. Ammassalik, southeast Greenland [67], shows the char-
acteristic BJ-shaped^ form in its RSL history observed in west-
ern Greenland, although displays a rapid fall in RSL in the
early Holocene more similar to southern Greenland records
[64, 67], which suggests fast removal of a large volume of
ice during initial ice margin retreat in these areas [62, 64,
67]. Such RSL spatial variability reflects the complex

interplay among the GIA response to retreat and advance of
the GrIS, glacio-isostatic subsidence from collapse of the
Laurentide ice sheet (LIS) proglacial forebulge, and eustatic
sea-level rise.

North America

Atlantic Coast

Near- and intermediate-field sites along the North American
Atlantic coast exhibit spatially variable RSL histories due to
deglaciation of the LIS and movement towards isostatic equi-
librium [68, 69]. RSL histories of once-glaciated, near-field
regions from Canada to Long Island have been driven by GIA

−15

−10

−5

0

5

10

15

 (
m

/k
a)

Arisaig, Scotland (red)

Rotterdam, Netherlands (green)

Baltic Coast, Sweden (blue)

30
15
0

-15
-30
-45
-60
-75
-90

(m
/k

a)

Southern Maine, 
USA (red)

New Jersey, USA (blue)

30

15

0

-15

Singapore (green)

West Guongdong, 
southern China (blue)

Langebaan Lagoon, South Africa

North Queensland, Australia (blue)

New SouthWales, Australia (red) 

30

15

0

-15

-30

-45

(m
/k

a)

Southern Disko Bugt, Greenland (blue)

South Shetland Islands,Antarctica (red)

0 2 4 6 8 10 12

Suriname and Guyana (red)

St. Croix (blue)

0 2 4 6 8 10 12 14 16

(m
/k

a)

Central California, USA (red)

30

15

0

-15

30

15

0

-15

30

15

0

-15

30

15

0

-15

Rio Grande do Norte State,
northeast Brazil (green)

Louisiana, USA (green)

Northwest Georgia Strait, Canada (blue)

(m
/k

a)

Tunisia (red)

Southern France (blue)

Nile, Egypt (green)

30

20

0

-10

10

Age (ka)

A

B

D

E

G

H

I

0 2 4 6 8 10 12

C

F

Fig. 5 1-ka average rates of RSL change calculated from the Gaussian
process model from each site presented in Figs. 3 and 4 in the following
regions: Antarctica/Greenland (a), Europe (b), North America (c, d), Asia

(e), Oceania (f), Africa (g), Caribbean/South America (h), Mediterranean
(i). Heavily/lightly shaded areas represent 1σ/2σ uncertainties

Curr Clim Change Rep (2015) 1:247–262 253



and eustatic sea-level changes. Glacio-isostatic uplift caused
RSL fall in Newfoundland and Labrador (from a maximum of
120 m at 16 ka) since the LGM [70]. Nova Scotia experienced
a RSL lowstand of −65 m at 13.5 ka and then rose at decreas-
ing rates through the Holocene [70]. The record from Maine
[71] shows retreat of the LIS around 15 ka with a marine limit
>50 m (Fig. 3c). RSL fell rapidly at a rate of −47±9 m/ka to a
lowstand of −60 m at 12.5 ka due to glacio-isostatic uplift
[71]. RSL then rose quickly to −20 m as early as 10.5 ka
before reaching a period of slowly rising RSL from −17 to
−22 m that lasted until 7.5 ka. A switch from glacio-isostatic
uplift to subsidence occurred at this time and RSL rose at a
relatively constant rate of 2.0±0.3 m/ka from 6 ka to present
(Fig. 5c).

Located near the former LIS margin, mid-Atlantic regions
fromNew Jersey to Virginia showmonotonic rise in RSLwith
some of the highest rates of deglacial RSL rise due to the
collapse of the forebulge and the associated glacio-isostatic
subsidence [68]. Horton et al. [43] accounted for local factors
impacting RSL (tidal range change and sediment compaction)
to reduce scatter in the Holocene record from New Jersey
(Fig. 3d). Using the model of Hill et al. [72], they estimated
paleotidal range from 10 ka to present in New Jersey and
predicted large Holocene paleotidal changes from 9 to 8 ka.
Sediment compaction explainedmeter-scale variations in RSL
where intercalated index points were corrected using the
thickness of sediment overburden. New Jersey RSL rose rap-
idly in the early Holocene at an average rate of 4.4±0.6 m/ka
from 9 to 7 ka, slowing in the mid-Holocene to a rate of 2.4±
0.2 from 7 to 3 ka. The rate of RSL rise slowed further in the
late Holocene to a rate of 1.3±0.1 m/ka from 3 ka to present
(Fig. 5d).

South of North Carolina into the U.S. Gulf coast, the effects
of GIA diminish [68]. A RSL record derived from
compaction-free basal peats demonstrated that Louisiana ex-
perienced RSL rise from 8.2 ka to present (Fig. 3f). Following
the rapid drainage of proglacial Lake Agassiz, combined with
eustatic sea-level rise, high rates of RSL are observed in the
early Holocene from 9 to 7 ka (7.2±0.4 m/ka; Fig. 5d) [69, 73,
74]. RSL rise was relatively constant throughout the mid- to
late Holocene with a rate of 0.8±0.0 m/ka from 6 ka to pres-
ent. The data does not support RSL in this region being above
present at any time during the Holocene [68, 74].

Pacific Coast

The Pacific coast of North America includes near- and
intermediate-field regions [49]). Deglacial RSL histories of
the Pacific coast [75–85] are supplemented by studies of the
earthquake and tsunami history of the Cascadia subduction
zone along the coasts of British Columbia, Washington,
Oregon, and northern California [86–93].

Regions formerly covered by the Cordilleran ice sheet
(southern Alaska to Puget Sound, Washington) are strongly
influenced by local ice loading, which results in variable RSL
histories [85]. In northwest Georgia Strait, RSL fell from a
marine limit as much as 154 m at 14 ka to a lowstand of
>−25 m at 11 ka after deglaciation due to glacio-isostatic
uplift. The rate of RSL fall was as extreme as −69±9 m/ka
(from 10 to 9 ka) (Figs. 3b, 5c). A small RSL highstand <5 m
was reached at 5.5 ka, followed by a slow rate of RSL fall of
−0.4±1.2 m/ka during the late Holocene from 4 ka to present.
The magnitude of the mid-Holocene highstand varies among
regions formerly covered by the Cordilleran ice sheet with
highstands considerably lower (~1.3 m) in central Alaska than
in much of southern Alaska and British Columbia (up to
7.2 m), likely due to the influence of tectonics [94].

Sites south of the Cordilleran ice margin (southern
Washington, Oregon, and central California, USA) demon-
strate a continuous rise of RSL throughout the Holocene due
to collapse of the forebulge and the associated glacio-isostatic
subsidence. In central California, RSL rose rapidly in the early
Holocene (10±1 m/ka between 11 and 8 ka) before slowing to
1.4±0.1 m/ka in the mid- to late Holocene (7 ka to present)
(Figs. 3e, 5d). This rate is of similar magnitude to those ob-
served at intermediate-field sites on the U.S. Atlantic coast
[68] and the UK and Fennoscandia [95, 96] (Fig. 5), although
a portion of this RSL rise may be attributed to Cascadia sub-
duction zone deformation.

Caribbean and South America

The Caribbean and South American Atlantic coast represent
intermediate- and far-field regions. Early studies of the
Caribbean island of Barbados focused on estimating the
deglacial eustatic signal [97], although subsequent investiga-
tions indicate the Caribbean and South America are influenced
by GIA processes, such as glacio-isostatic subsidence, rota-
tional effects, ocean siphoning, and continental levering [3, 5,
36, 98, 99]. The tectonic setting of the Caribbean and South
America may also impact RSL records [98]. For example,
Austermann et al. [6] found strong perturbation of RSL model
predictions due to a high-viscosity slab associated with sub-
duction of the South American Plate beneath the Caribbean
Plate, which suppresses local deformation and decreases
subsidence.

Records from Caribbean islands such as St. Croix [99]
(Fig. 3g) show a monotonic rise in RSL with relatively high
rates of 3.9±1.2 m/ka between 8 and 6 ka (Fig. 5h), which
Milne et al. [5] attribute to eustatic contributions. The rate of
RSL rise slowed in the mid- to late Holocene to 0.8±0.2 m/ka
between 6 ka and present. The absence of a highstand in St.
Croix is attributed to glacio-isostatic subsidence from LIS
forebulge collapse [5, 99].
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Moving south to Suriname and Guyana [100] (Fig. 3h), a
small (<1 m) highstand emerges at ~7.5 ka. Faster rates of RSL
rise are found in the early Holocene (5.2±0.8 m/ka from 9 to
7 ka) compared to the mid-Holocene (1.0±0.5 m/ka from 7 to
5 ka; 0.1±0.4 m/ka from 5 to 2 ka) before RSL fall to present
(−0.5±0.4 m/ka from 2 ka to present) (Fig. 5h). Because
Suriname and Guyana are located beyond the southern limit
of LIS forebulge collapse, hydro-isostatic loading of the shelf
becomes the dominant process and causes uplift of the conti-
nent to produce a highstand in the mid- to late Holocene [5].

Rio Grande do Norte State in northeast Brazil shows a
similar form in RSL to Suriname and Guyana, and al-
though the timing of the initiation of the highstand is com-
parable, the magnitude of the highstand at Rio Grande do
Norte State is greater at 2.9±0.6 m [101, 102]. From 5 ka
to present, RSL fell at a rate of −0.3±0.4 m/ka (Figs. 3i,
5h). Angulo et al. [103] indicated the magnitude of the
highstand varied from 2 to 5 m above present along the
Brazilian coastline.

Further south, Rostami et al. [98] showed a highstand of 6
to 7 m at ~7 to 8 ka at sites along the Patagonian coast.
Rostami et al. [98] suggested that the influence of the
Patagonian ice sheet on the RSL data is negligible. The
Beagle Channel shows a similar magnitude 6-m highstand,
but this highstand occurs at ~6 ka [104, 105]. The presence
of a highstand of the observed magnitude in southern
Argentina may be related to local hydro-isostatic loading of
the broad continental shelf or proximity to the subduction
zone on the Chilean trench [5, 98].

Antarctic Peninsula

RSL data from Antarctica can constrain its ice sheet history
[106–109] in this near-field region where large glacio-isostatic
gradients occur [110]. The studies that exist from the Antarctic
continent show RSL falling from an early Holocene marine
limit of ~20 m in the Antarctic Peninsula, ~40 m in East
Antarctica, and ~30 m in Ross Ice Shelf [107, 109].

The most recent RSL studies are from the South
Shetland Islands of the Antarctic Peninsula [107, 108,
111]. Watcham et al. [112] used radiocarbon dating of iso-
lation basins and beach ridges from the Fildes Peninsula to
reconstruct RSL. To overcome the large uncertainties that
exist in the 14C reservoir age [113], Simms et al. [114, 115]
used optically stimulated luminescence dating of beach
ridges in Maxwell Bay to constrain former sea level.
These studies show RSL in the South Shetland Islands
remained stable between 15 and 16 m above present from
9.0 to 5.5 ka, although there is scatter and large uncer-
tainties in the mid-Holocene data (Fig. 3j). RSL fell from
the mid-Holocene to the present level at −3.2±1.0 m/ka
from 3 ka to present (Fig. 5a).

Europe

Trends of RSL from near- and intermediate-field sites in
Europe are characterized by glacio-isostatic uplift (e.g.,
Scotland and Sweden) and subsidence (e.g., the Netherlands
and Germany) in response to melting of the British and
Fennoscandian ice sheets since the LGM [1, 96, 116–120].
Despite its relatively small size, the British ice sheet created
large variations in RSL trends from the north to south of the
UK [95].

Sea-level index points from isolation basins of Arisaig,
northwest Scotland [121], where LGM ice thickness was
~900 m, show RSL fall from 40 to 36 m at ~16 ka to ~3 m
above present at 11 ka (Fig. 4a). Fast rates of RSL fall (−4.6±
0.8 m/ka) occurred between 14 and 12 ka (Fig. 5b), after
which RSL rose to a mid-Holocene highstand at 6.6 ka (6.5
±0.5 m). RSL fell from this highstandwith rates not exceeding
−1.6±1.1 m/ka during the late Holocene in response to a re-
duction in glacio-isostatic uplift and eustatic input [95].

RSL trends from the southern coast of Sweden reveal evi-
dence for rapid sea-level rise following the retreat of the
Scandinavian Ice Sheet [122]. Sea-level index points from
isolation basins reveal relatively high rates of RSL rise during
the early tomid-Holocene with rates of 4.2±0.6 m/ka from 8.5
to 6.5 ka (Fig. 5b) to a highstand of 8.9±0.5 m (Fig. 4b). From
6.5 ka, the gradual fall in RSL reflects the slow continued
glacio-isostatic uplift coupled with minimal eustatic input
[122] and is reflected by rates of RSL fall of −1.4±0.4 m/ka
from 5 ka to present.

Hijma and Cohen [123] produced a Holocene RSL record
from Rotterdam, Netherlands using basal peats (Fig. 4c). RSL
rose rapidly in the early Holocene at a rate of 5.3±0.9 m/ka
from 8 to 6 ka (Fig. 5b). This rapid rise included a 2.1±0.9-m
sea-level jump occurring within 200 years commencing at
8.5 ka. The observed trends were attributed to meltwater re-
lease from proglacial Lakes Agassiz and Ojibway through the
Hudson Strait into the North Atlantic [123]. During the mid to
late Holocene, there was a gradual decline in the rate of RSL
rise to 1.2±0.4 m/ka.

Mediterranean

The microtidal regime and presence of numerous remains of
coastal archeological structures have made the intermediate-
to far-field Mediterranean region a focus for sea-level studies
[34, 124, 125]. Regional compilations of RSL data have been
produced for both the eastern [126–128] and western
[129–131] Mediterranean coast. Due to its complex tectonic
setting [132], RSL histories in the eastern Mediterranean were
influenced by the Holocene activity of major faults [126, 133,
134]. In this region, RSL rise slowed significantly in the last
7.5 ka, with consequent initiation of deltaic progradations of
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the largest Mediterranean rivers [135] such as the Nile delta
[136, 137].

RSL records from tectonically stable sectors of the western
Mediterranean document a continuous rise from −45.9±0.8 m
at 11.5 ka due primarily to glacio- and hydro-isostatic
factors [138]. In southern France, RSL rose at 11.5±0.9 m/ka
in the early Holocene between 11.5 and 9.5 ka with rates de-
creasing significantly at ~7.5 ka when RSL reached −7.4±
0.3 m. RSL in the mid-Holocene (7.5 to 4 ka) rose at 1.7±
0.1 m/ka, slowing further in the late Holocene to a rate of 0.4
±0.1 m/ka (Figs. 4d, 5i).

The Southern Tunisia RSL record is characterized by a
well-documented mid-Holocene highstand beginning at
7.5 ka (Fig. 4e) [139]. RSL reached a maximum highstand
of 1.1±0.2 m at ~5.8 ka, with RSL falling to present slowly
at rate of −0.19±0.07 m/ka (Fig. 5i) from 6.5 ka to present.
According to Mauz et al. [140], the Tunisian highstand is
compatible with the melting history of the Antarctic ice sheet.

RSL in the Nile, Egypt during the early Holocene rises
relatively rapidly from ~−23 m at 9 ka to ~−6 m at 6 ka at a
rate of 5.6±0.6 m/ka (Figs. 4f, 5i). These rates slowed at ~6 ka
with RSL remaining stable in the late Holocene with a rate of
rise of 1.0±0.3 m/ka between 6 and 2 ka. Recently, Marriner
et al. [141] demonstrated that subsidence was a dominant pro-
cess, especially in the last ~4.0 ka, and significantly impacted
the late Holocene sea-level history of the Nile delta.

Africa

In the far-field location of mainland southeastern Africa (e.g.,
South Africa, Zanzibar, Mozambique), uncertainties exist re-
garding the timing and amplitude of a mid-Holocene
highstand [42, 142–144] caused primarily by continental le-
vering [39]. Part of these uncertainties results from the large
distances between field sites (e.g., South Africa to
Mozambique) and the varied RSL reconstruction methods
used [145]. At sites on the mainland of southeast Africa, RSL
reached ~2.5 to 3.5 m above present by 6 ka [144]. Stable
islands off the coast of southern Africa (Mauritius, Reunion
and Mayotte) record no highstand (with RSL stabilizing at
present level by 3 ka) because these small atoll islands subside
with the ocean floor from hydro-isostatic loading [44, 146,
147]. A recent study of late Holocene RSL in the Seychelles
[148], a location demonstrated to closely measure eustatic sea
level [39], showed RSL rising <2 m in the last 2 ka.

In South Africa, Compton [44] studied Langebaan Lagoon,
a salt-marsh lagoon on the southwest coast to produce a 9000-
year Holocene RSL record, which is in general agreement
with a previous study of beach rock by Ramsay [149]. In
Langebaan Lagoon, RSL rose in the early Holocene at a rate
of 4.2±0.8 m/ka between 9 and 6 ka (Figs. 4g, 5g). It reached
its present level by ~7 ka, rising to a maximum of 3.1±0.5 m

at 6.3 ka. RSL slightly fell at a rate of −1.5±1.9 m/ka between
6 and 5 ka, remaining relatively stable until 2 ka, at which time
it fell at a rate of −0.8±1.1 m/ka to its present value.

Asia

Investigations of Holocene RSL in the far-field region of Asia
are concentrated in southeast Asia [150–153], although stud-
ies have expanded in recent years to include South Korea
[154], the Philippines [155], China [145 –148], the Malay-
Thai peninsula [160 –164 ], and Japan [165 ]. These records
are characterized by a mid-Holocene highstand attributed to
hydro-isostatic processes [166, 167 ], which varies in magni-
tude and timing of initiation. RSL may also be influenced by
active subduction zone tectonics from collision of the
Eurasian, Indian, Philippine, and Pacific plates [44, 168] or
sediment loading from large river deltas [166].

Zong [166] examined China’s Yangtze Delta and Taihu
area RSL histories and separated regions by geological setting
to examine influences of global and local factors. Within large
river deltas, RSL did not reach higher than present due to local
subsidence and sediment consolidation. Conversely, a
highstand of 1 to 2 m was recorded at Fuijan and East
Guangdong where tectonic uplift was observed along the ac-
tive plate margin of the Eurasian and Philippine plates. In
stable coastal sites (e.g., West Guangdong; Fig. 4i), the
highstand reaches slightly higher (<1.4 m) than present-day
RSL. In West Guangdong, RSL rose from −19.6±1.8 m at
9.6 ka to its present level at 6.5 ka at rates as high as 7.7±
2.2 m/ka. RSL remained stable from this time to present with a
slight fall between 6.5 ka to present at a rate of −0.2±0.2 m/ka
(Figs. 4h, 5e). A recent high-resolution (~±0.1 m) study of
corals by Yu et al. [156], however, indicates mid-Holocene
RSL has fluctuated on multi-decadal to century scales likely
related to climatic changes.

Holocene studies from the Malay-Thai peninsula suggest a
RSL highstand of up to 5 m between 6 and 4 ka, which may
have exhibited an oscillatory subsequent fall [153, 160, 164,
169–173 ]. The highstand varies in magnitude by 3 to 4 m due
to spatial variability from hydro-isostasy [167 ]. Bird et al.
[160] present sea-level data from the stable location of
Singapore, which varies in form from South China (Fig. 4i).
High rates of RSL rise (4.4±0.5 m/ka) were observed in the
early Holocene between 9 and 6 ka (Fig. 5e) until RSL reached
its greatest altitude of 3.3±0.3 m at 5.8 ka. RSL then fell in the
mid Holocene from 6 ka to present at a rate of −0.4±0.2 m/ka.

Oceania

Their far-field location and relative tectonic stability have
made the coastal margins of Australia an important setting
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for studies of deglacial sea-level changes [174–178]. This re-
gion is characterized by a mid-Holocene highstand. Both
smooth and oscillating sea-level trends have been recorded
since the highstand [179, 180]. This discrepancy in part re-
flects differences in the sea-level indicators used and their
interpretation [178 ].

Woodroffe [181] investigated Holocene sea-level changes
from northern Queensland (Fig. 4j). During the Holocene ma-
rine transgression, the rate of RSL rise was rapid between 11
and 8 ka (13±5 m/ka; Fig. 5f). RSL reached above present
level between 8.0 and 6.2 ka when the average rate of change
decreased to 3.0±2.4 m/ka. A mid-Holocene highstand at
5.0 ka reached 2.8±0.4 m above present level and remained
relatively stable until at least 2.3 ka. After this time, RSL
gradually fell to its present level at a rate of −0.2±2.5 m/ka
between 2 ka and present. Woodroffe [181] did not find any
evidence for an oscillatory trend in RSL.

In southeastern Australia, Sloss et al. [182] reviewed the
sea-level history for the New South Wales coast. They show
RSL rose from −15 m between 9.5 and 8 ka at a rate of 8.3±
1.6 m/ka, reaching its present level at ~7 ka and a highstand of
1.4±0.1 m at ~5.5 ka.While negative and positive fluctuations
are observed during the highstand, they are superimposed
over a broader RSL fall of −0.3±0.2 m/ka during this period
[182].

In northern New Zealand, Gibb [183] presented RSL data
near relatively inactive tectonic regions close to Auckland.
Here, RSL rose 25 m from 9 ka to its present level at ~7 ka
and has remainedwithin 1 to −0.5 m since [184]. Gehrels et al.
[185] suggested that RSL changes from southeastern New
Zealand and Tasmania have been close (±0.5 m) to modern
level for the last 6000 years.

Conclusions

RSL data reveal spatial and temporal changes caused by the
varying dominance of eustatic and (glacio- and hydro-) isostat-
ic factors over the Holocene. Near-field regions (e.g.,
Antarctica, Greenland, Canada, Sweden, and Scotland) are
characterized by a complex, spatially variable RSL fall from
a maximum marine limit, which reflect the relative influences
of eustatic sea-level rise and glacio-isostatic uplift. In
intermediate-field regions (e.g., mid-Atlantic and Pacific coasts
of the USA, Netherlands, Southern France, St. Croix) isostatic
and eustatic effects collectively produced RSL rise. Far-field
locations show a characteristic mid-Holocene highstand in
RSL, which differs in timing and magnitude across sites from
South America, South Africa, Asia, and Oceania.
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